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1. Introduction

The mechanics of a continuum are commonly described by relating two sets of coordinates: a set

of reference coordinatesthat serves to label the particles in an arbitrary (perhaps initial or even

fictitious) configuration, and a set ofspatial coordinatesthat fixes locations in space (that is, in

the laboratory) (1, 2). The importance of the reference coordinates in continuummechanics is

that they serve tonameeach individual particle so it can be tracked in the spatial coordinates.

This is the sense in which the reference coordinates may evenbe fictitious—since they merely

serve to label each particle; reference coordinates themselves need not have any particular

geometric meaning so long as they fulfill this requirement. In this report, we seek to clarify the

relationship between the two standard coordinate sets and athird set of coordinates, generally

calledconvectivecoordinates which are related in subtle ways to both the spatial and reference

coordinates. Convective coordinates are particularly important with respect to nonmechanical

physics occurring against the background of a deforming body, and are almost essential within the

framework of the theory of relativity, as that theory does not recognize the universality of

simultaneity.

More specifically, in this report, we clarify the relationships between these three coordinate

systems, and use the convective coordinate system to formulate the classical theory of

electromagnetism in the presence of material deformation.This reformulation is useful in

numerical work because the physically required continuityof electromagnetic field descriptions

depends intimately on the geometry of the boundary, which isgenerally simple to describe only in

reference or convective coordinates. By reformulating theMaxwell equations in convective

coordinates, we also demonstrate that the standard vector formulation of them is not covariant in

classical physics (3). In other words, we demonstrate that a proper formulation of Maxwell’s

equations, implying the invariance of physical law for all observers, cannot be achieved within the

confines of classical physics. This difficulty is a primary source of the conflicting formulation of

the Maxwell equations in continuum mechanics literature (3–6).

2. Background and Curvilinear Coordinates

To understand the subtle differences in the various coordinate systems presented in this work,

definitions need to be made clearly and with a modicum of rigor. Moreover, the formulations
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presented in the following concentrate on the use of generalcurvilinear coordinates, a subject

likely unfamiliar to many readers. Therefore, in the interest of precision and clarity, we describe

curvilinear tensor theory in the next two sections. This section concentrates on the algebra of

curvilinear systems, their metric structure, and the vector bases used to define field quantities.

The next section describes the formulation of differentialoperators for the differentiation of field

quantities defined in such spaces.

2.1 The Background Cartesian System

Before defining the physical coordinate systems at the heartof this report, we first describe an

absolute, mathematical coordinate system disconnected from any material continuum and fixed

firmly as a background description of space. This backgroundspace is assumed Cartesian and

fixed for all time, and is denoted bys. The spaces is constructed given a pointO (theorigin) and

three orthonormal vectorsu1, u2, andu3. An arbitrary pointP hascoordinates(x1, x2, x3) if the

vector fromO to P is given by theposition vector

x = xiui. (1)

Superscripts are used here for indexing for reasons that will become clear later. In any case, here

we use the Einstein convention that an index repeated in a superscript and a subscript is to be

summed over its range.

In addition to serving as the basis for geometrical description, s can be used to describe physical

scalar and vector fields. For instance, if we have a (static) pressure associated with each point in

space, we may write

p = p
(

xi
)

, (2)

where thexi refer to points of space as defined by equation 1. Similarly, the electric field at the

point with coordinatesxi can be written in the form

e = ei
(

xj
)

ui, (3)

where now both the coordinates and the basis vectors of underlying background description are

employed.

2.2 Curvilinear Coordinates and Metrics

Our initial description is based on Cartesian coordinates because such a description allows us to

define coordinates through equation 1 and thus directly connect coordinates with position vectors.
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On the other hand, any set of three numbers(x̃1, x̃2, x̃3) suffices to locate points in space if every

such triplet is mapped uniquely to a point in space; that is, if the mapping

x̃ı̃ = ξ̃ ı̃
(

xi
)

ı̃, i ∈ {1, 2, 3} (4)

has the properties that each coordinate setx̃ı̃ is the image of a exactly one coordinate setxi.

(From this point on, the range on indices, which for this workis always{1, 2, 3}, is assumed and

suppressed.) That is, we are assuming the mappingξ̃ ı̃ is bijective, i.e., there is a unique set of

functionsξi such that

xi = ξi
(

x̃ı̃
)

. (5)

These new̃xı̃ coordinates function as well for point location as did the old xi coordinates because

of this one-to-one mapping: Given thex̃ı̃, thexi are determined uniquely, and associated with the

point described by equation 1. We therefore refer to this newcurvilinear coordinate systems ass̃,

and label all vectors iñs just like their counterparts ins, but with a tilde. The only weakness of

usings̃ to describe space is that nothing as simple as equation 1 relates the point location to the

coordinates.

Given this failure of equation 1 and the unclear relationship between thẽxı̃ and theui, it makes

sense to define new basis vectors to describe vector fields ins̃ (if not position vectors). Inspired

by the original Cartesian basis vectors, we might define our new basis to be in the direction of

increase of a single coordinate, computed holding the othercoordinates constant. Specifically,

define

ũı̃
.
=
∂xi

∂x̃ı̃
ui. (6)

These vectors are not necessarily of unit length or orthogonal, but they do point in the direction

desired. The basis is illustrated at a fixed point in figure 1a.These vectors, and any other

tensorial quantities indexed by a subscript and therefore subject to variable changes in the manner

of equation 6, are calledcovariant.

The Cartesian basis vectors are not only well suited to theircoordinate system because they point

in the direction of increase of a coordinate holding all other coordinates constant; they are also

orthogonal to the constant coordinate value surfaces constructed by holding a single variable

constant and letting all other coordinates vary. Theũı̃ do not have this property. In view of this,

we can define a new set of basis vectors

ũı̃ .=
∂x̃ı̃

∂xi
ui, (7)
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(a) (b) 

Figure 1. (a) Covariant basis vectorsũı̃, and (b) contravariant basis vectorsũ
ı̃ at the point(b, b). The grid

is drawn assuminga < b < c < d .

where for notational convenience we define

ui .= δijuj, (8)

and as usualδij (with indices as superscripts or subscripts or both) is the Kronecker delta. These

vectors are orthogonal to the constant coordinate value surfaces (i.e.,̃uı̃ is orthogonal to the

x̃ı̃ = constant surface) since they are the gradients of the curvilinear coordinate values with

respect to the underlying Cartesian system. Indeed, thebiorthogonalityof the covariant and

contravariant components follows from the chain rule:

ũı̃ · ũ̃ =

(

∂xi

∂x̃ı̃
ui

)

·
(

∂x̃̃

∂xj
uj

)

= δij
∂xi

∂x̃ı̃
∂x̃̃

∂xj
=
∂xj

∂x̃ı̃
∂x̃̃

∂xj
= δ ı̃̃ (9)

They are illustrated in figure 1b, and are calledcontravariantbecause they change in a manner

opposite that of the covariant basis as expressed by equation 7.

Finally, we note that we can define higher-order tensors thatobey similar rules, and that they can

be covariant or contravariant in any of their indices. In this work, no tensors of higher than

second order appears. As an example, a twice-contravariantset of second-order tensor

coefficientsaij transforms according to the formula

ãı̃̃ =
∂x̃ı̃

∂xi
∂x̃̃

∂xj
aij , (10)
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precisely because the vectorouter productuiuj is twice-covariant:

ũı̃ũ̃ =
∂xi

∂x̃ı̃
∂xj

∂x̃̃
uiuj . (11)

Indeed, these two equations taken together ensure the product of such quantities isinvariant, since

ãı̃̃ũı̃ũ̃ =

(

∂x̃ı̃

∂xm
∂x̃̃

∂xm
amn

)(

∂xi

∂x̃ı̃
∂xj

∂x̃̃
uiuj

)

= δimδ
j
na

mnuiuj

= aijuiuj . (12)

This invariance under the change of coordinates is a hallmark of a correctly formulated physical

theory since it ensures that the meaning of physical quantities is independent of their

mathematical description. Similarly, a mixed second-order tensoraij changes coordinates in the

by now expected fashion

ãı̃̃ =
∂x̃ı̃

∂xi
∂xj

∂x̃̃
aij , (13)

because the product̃uı̃ũ
̃ changes in the opposite fashion.

Because of these notational observations, it is easy to compute the inner product of two vectors

expanded with respect to the two different bases. If we write

a = ãı̃ũı̃ = ãı̃ũ
ı̃, (14)

and

b = b̃ı̃ũı̃ = b̃ı̃ũ
ı̃, (15)

then

a · b = ãı̃b̃ı̃ = ãı̃b̃
ı̃. (16)

(As an aside, note that the boldface vector notation does notdistinguish between covariant and

contravariant coordinate systems. This is because vectorsthemselves, as independent, physically

meaningful entities, are by definition independent of coordinate system. Basis vectors, which

seem to be an exception to this rule, are in fact not exceptions: For them, the use (or nonuse) of a

tilde indicates for which space they form a covariant or contravariant basis, rather than having

anything to do with their expansion in any system.)

To ease the computation of scalar products between pairs of covariant or contravariant vectors, a

5



metric tensor is introduced. Defining the metric tensor

g̃ı̃̃
.
= ũı̃ · ũ̃, (17)

the inner product ofa andb can be computed from contravariant components alone:

a · b = g̃ija
ı̃b̃. (18)

In a similar manner, the twice contravariant metric tensor is defined:

g̃ij
.
= ũı̃ · ũ̃. (19)

These two tensors are trivially symmetric and are inverses of one another by the chain rule:

g̃ı̃̃g̃
̃k̃ = δk̃ı̃ . (20)

The introduction of the metric tensor creates the possibility of working entirely with vector

coefficients, and assuming and suppressing the basis vectors that are always defined by

equations 6 and 7. (Indeed, some books (7) never even mention these vectors, assuming them

superfluous.) For this approach to be useful, the metric tensor should be computable from the

functionsξ andξ̃, and indeed it is. The standard covariant metric tensor may be computed from

g̃ı̃̃ = ũı̃ · ũ̃ =

(

∂xi

∂x̃ı̃
ui

)

·
(

∂xj

∂x̃̃
uj

)

= δij
∂xi

∂x̃ı̃
∂xj

∂x̃̃
(21)

recalling in the final step thats is orthonormal soui · uj = δij . This computation has the added

benefit of demonstrating thatg̃ı̃̃ is a tensor, since the metric tensor ins is trivially given by

gij ≡ δij . In precisely the same way, the inverse of the metric tensorg̃ ı̃̃ can be directly computed

according to the formula

g̃ ı̃̃ = δij
∂x̃ı̃

∂xi
∂x̃̃

∂xj
, (22)

and is a twice contravariant tensor.

Finally, computing the dot product of the vectora defined above with each of the basis vectors in

turn demonstrates that the covariant and contravariant components of a vector are related through

the metric tensor:

ãı̃ = g̃ı̃̃ã
̃, (23)
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and

ãı̃ = g̃ ı̃̃ã̃. (24)

These operations are known as theloweringandraisingof an index, respectively.

2.3 Determinants and Cross Products

In addition to the computation of dot products (and thereby lengths), work in physics requires the

computation of cross products and determinants. These computations depend intimately upon

the definition of the Levi-Civita system

εijk
.
=











0 if i = j, j = k, or i = k,

1 if ijk is an even permutation of 123,

−1 if ijk is an odd permutation of 123.

(25)

This definition shows clearly that all completely antisymmetric third-order systems are scalar

multiples of the Levi-Civita system, a fact we will need later. We can also define the

contravariant Levi-Civita system in the obvious way, specifically

εijk = δirδjsδktεrst (26)

Determinants and Jacobians can be easily computed in terms of this tensor. The Jacobian of the

mapping from thexi to thex̃ı̃ is given by the formula

det

(

∂xi

∂x̃ı̃

)

.
= εijk

∂xi

∂x̃1
∂xj

∂x̃2
∂xk

∂x̃3
. (27)

This observation can be used to clarify the tensorial natureof the Levi-Civita system.

Specifically, we can consider the system

∆ı̃̃k̃

.
= εijk

∂xi

∂x̃ı̃
∂xj

∂x̃̃
∂xk

∂x̃k̃
. (28)

This system is completely antisymmetric because, for instance,

∆̃ı̃k̃ = εijk
∂xi

∂x̃̃
∂xj

∂x̃ı̃
∂xk

∂x̃k̃
= −εjik

∂xj

∂x̃ı̃
∂xi

∂x̃̃
∂xk

∂x̃k̃
= −∆ı̃̃k̃. (29)

Therefore, because all antisymmetric systems of third order are uniquely determined up to a

7



multiplicative constant, we find that

εijk
∂xi

∂x̃ı̃
∂xj

∂x̃̃
∂xk

∂x̃k̃
= det

(

∂xi

∂x̃ı̃

)

εı̃̃k̃, (30)

and, by the same token,

εijk
∂x̃ı̃

∂xi
∂x̃̃

∂xj
∂x̃k̃

∂xk
= det

(

∂x̃ı̃

∂xi

)

εı̃̃k̃. (31)

These two equations imply that the Levi-Civita system is nota tensor in the usual sense, but in a

new sense in which the usual tensorial transformation is accompanied by multiplication with a

power of the Jacobian determinant. Such tensors are calledrelative tensors, or, if the power of

the determinant is±1, tensor densities(7). (Note that no tilde is ever put onε since it has the

same values in all systems and so needs no such distinction.)In this sense, we may refer to it as

the “Levi-Civita tensor.”

Because the determinant of the variable transformation tensor occurs so frequently in the

following, we can simplify the remaining exposition with better notation. If we let the

determinant of a twice-covariant tensor be represented by its unsubscripted symbol, we can write

g̃
.
= det (g̃ı̃̃) = det

[(

∂xi

∂x̃ı̃
ui

)

·
(

∂xj

∂x̃̃
uj

)]

= det

[

δij

(

∂xi

∂x̃ı̃

)(

∂xj

∂x̃̃

)]

=

[

det

(

∂xi

∂x̃ı̃

)]2

, (32)

or, more simply,
√

g̃ = det

(

∂xi

∂x̃ı̃

)

. (33)

Note again that this definition pertains only to the determinants of twice-covariant tensors, and in

particular to the twice-covariant metric tensor.

This clean expression for the Jacobian can be used to simplify the expression of cross products in

the curvilinear system. If the original Cartesian space is right-handed, as we shall always

assume, the cross productc = ciui = ciu
i of the vectorsa andb of equations 14 and 15 has

contravariant components given by

ci = εijkajbk (34)

and covariant components given by

ci = εijka
jbk. (35)
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Applying all the change of basis rules described above to these formulas, we find that the

coefficients of the cross product are given in the curvilinear system by

c̃ı̃ =
1√
g̃
εı̃̃k̃ã̃b̃k̃, (36)

and

c̃ı̃ =
√

g̃ εı̃̃k̃ã
̃b̃k̃. (37)

3. Differential Operators in Curvilinear Spaces

Having completed the description of the algebra underlyingthe description of fields in curvilinear

coordinate systems in the last section, we turn to the differentiation of such fields in this section.

The main idea is that tensors should be differentiated in a physically meaningful way; that is, that

the results of such differentiations should be tensors. A so-called covariant derivative ensures the

physicality of results. It is defined immediately below.

3.1 The Covariant Derivative

The last section described the algebra involved in changingcoordinates between a fixed Cartesian

systems and a curvilinear system̃s. In this section, we explore the analytical properties of

coordinate system changes. In particular, given a vectora, we wish to determine how its

derivatives with respect to space can be computed such that their meaning is not bound to any

particular coordinate system.

To this end, consider the change undergone by a vectora over a differential distancedx. In thes̃

system, the change ina can be expressed in terms of a dot product as

da =
∂a

∂x̃ı̃
dx̃ı̃. (38)

To actually apply this formula, a more specific formula for the components of the partial

derivative indicated above is needed. To this end, we define thecovariant derivativesof the

components as
Dã̃
Dx̃ı̃

.
=

∂a

∂x̃ı̃
· ũ̃, (39)

and
Dã̃

Dx̃ı̃
.
=

∂a

∂x̃ı̃
· ũ̃. (40)
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The word “covariant” used here in concert with the derivative definition is not meant to indicate

the nature of an index (though covariant differentiation does result in the addition of a covariant

index to a tensor). Rather, the word implies that the result is tensorial; that is, it is covariant in

that it changes form appropriately under a change of coordinates.

To find practical formulas for the covariant derivative components, we begin with equation 39 and

apply the product rule of differentiation to find

∂a

∂x̃ı̃
=
∂
(

ãk̃ũ
k̃
)

∂x̃ı̃
=
∂ãk̃
∂x̃ı̃

ũk̃ + ãk̃
∂ũk̃

∂x̃ı̃
. (41)

Computing the inner product of this equation with the basis vectorũ̃, and defining theChristoffel

symbol of the second kindby

{

k̃

̃ ı̃

}

.
= −ũ̃ ·

∂ũk̃

∂x̃ı̃
= ũk̃ · ∂ũ̃

∂x̃ı̃
, (42)

we find that (7, 8)
Dã̃
Dx̃ı̃

=
∂ã̃
∂x̃ı̃

−
{

k̃

̃ ı̃

}

ãk̃. (43)

Other authors use the notation

Γk̃
̃ı̃ =

{

k̃

̃ ı̃

}

(44)

for the Christoffel symbols, but this notation is not employed here. In particular, the alternative

notation makes the Christoffel symbols look like third-order tensors, which they are not.

The covariant derivative of the contravariant components of a vector can similarly be shown to be

(7, 8)
Dã̃

Dx̃ı̃
=
∂ã̃

∂x̃ı̃
+

{

̃

k̃ ı̃

}

ãk̃. (45)

The definition can even be extended to covariant, contravariant, and mixed tensors of second

10



order yielding (7, 8)

Dãı̃̃

Dx̃k̃
=
∂ãı̃̃

∂x̃k̃
−
{

m̃

ı̃ k̃

}

ãm̃̃ −
{

m̃

k̃ ̃

}

ãı̃m̃, (46)

Dãı̃̃

Dx̃k̃
=
∂ãı̃̃

∂x̃k̃
+

{

ı̃

m̃ k̃

}

ãm̃̃ +

{

k̃

m̃ ̃

}

ãı̃m̃, (47)

Dãı̃̃

Dx̃k̃
=
∂ãı̃̃

∂x̃k̃
+

{

ı̃

m̃ k̃

}

ãm̃̃ −
{

m̃

k̃ ̃

}

ãı̃m̃, (48)

as the appropriate formulas for the coefficient derivatives.

3.2 The Christoffel Symbols

The Christoffel symbols used in the definition of the covariant derivative and defined in

equation 42 obey some important identities that find uses in this work. These identities are for

the most part proven by complicated (but purely formal) manipulations, and their proofs can be

found in almost any work on tensor analysis, such as references 7 or 8.

First, it can be demonstrated that the symbols are symmetricin their lower indices; that is, that

{

ı̃

̃ k̃

}

≡
{

ı̃

k̃ ̃

}

, (49)

so that in particular

εı̃̃k̃

{

ı̃

̃ k̃

}

≡ 0. (50)

This symmetry can be used to derive their expansion in terms of the metric tensor, which after

some tedious manipulations can be shown to be (7, 8)

{

ı̃

̃ k̃

}

=
1

2
g̃ ı̃m̃
(

∂g̃m̃̃

∂x̃k̃
+
∂g̃m̃k̃

∂x̃̃
−
∂g̃̃k̃
∂x̃m̃

)

. (51)

Two more facts about Christoffel symbols are important in the remainder of the work. The first is

Ricci’s lemma, which states that the covariant derivative of the metric tensor vanishes. The proof

is simple: Ins, gij = δij , so its covariant derivative vanishes trivially. Since themetric tensor is

itself a tensor, its covariant derivative is also a tensor. Therefore, its vanishing in one system

proves its vanishing in all systems. Ricci’s lemma implies that the metric tensor can be treated as

a constant for the purposes of covariant differentiation.
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Finally, intricate (but ultimately straightforward) manipulations of the Christoffel symbol

definition show that (7, 8)
{

ı̃

ı̃ ̃

}

=
1√
g̃

∂
√
g̃

∂x̃̃
. (52)

3.3 Differential Operators

With all of this detail in hand, the standard differential operators of multivariate calculus can now

be introduced. Ins, the gradient of a scalarφ(xi) has components equal to the partial derivatives

with respect to the underlying coordinate dimensions:

∇φ .
=

∂φ

∂xi
ui. (53)

Note that the components of the gradient are covariant, as they are associated with the

contravariant basis vectors ensuring the consistency of the Einstein summation convention.

Assuming thatφ has a physical meaning independent of the coordinate systemin which it is

defined (that is, assumingφ a true physical scalar), its value ins̃ must obey

φ̃
(

x̃ı̃
) .
= φ

(

xi
)

. (54)

To find the gradient value iñs, we invoke the formula for contravariant change of basis,

∂φ

∂xi
(

ui
)

=
∂φ

∂xi

(

∂xi

∂x̃ı̃
ũı̃

)

, (55)

so that, by the chain rule, the gradient is given by

∇φ =
∂φ̃

∂x̃ı̃
ũı̃. (56)

The divergence of a vectora is given by the formula

∇ · a .
=

Dai

Dxi
(57)

in s. Covariant differentiation is used here to ensure that the result is a true scalar. (It is trivially

identical to partial differentiation here anyway given theCartesian assumption ons.) Now,

because covariant derivatives change coordinates according to the laws of tensor algebra, we can
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immediately write

∇ · a =
Dãı̃

Dx̃ı̃
. (58)

Using equations 45 and 52, we can expand this expression to find

Dãı̃

Dx̃ı̃
=
∂ãı̃

∂x̃ı̃
+

{

ı̃

ı̃ ̃

}

ã̃ =
∂ãı̃

∂x̃ı̃
+

1√
g̃

∂
√
g̃

∂x̃̃
ã̃, (59)

or finally, by separating a factor of̃g−
1

2 and recognizing the derivative of a product,

∇ · a =
1√
g̃

∂

∂x̃ı̃

(

√

g̃ ãı̃
)

. (60)

Lastly, there is the curl. Ins, the curl is defined as

∇× a
.
= εijk

Dak
Dxj

ui. (61)

This formula can be brought intõs using equation 31 and the usual covariant variable change

formulas to find

εijk
Dak
Dxj

ui =

(

1√
g̃

∂xi

∂x̃m̃
∂xj

∂x̃ñ
∂xk

∂x̃p̃
εm̃ñp̃

)

(

∂x̃̃

∂xj
∂x̃k̃

∂xk
Dãk̃
Dx̃̃

)

(

∂x̃ı̃

∂xi
ũı̃

)

=
1√
g̃
εm̃ñp̃δm̃ı̃ δ

ñ
̃ δ

p̃

k̃

Dãk̃
Dx̃̃

ũı̃

=
1√
g̃
εı̃̃k̃

Dãk̃
Dx̃̃

ũı̃. (62)

In view of equation 50, however,

εı̃̃k̃
Dãk̃
Dx̃̃

≡ εı̃̃k̃
∂ãk̃
∂x̃̃

, (63)

so that the curl may finally be written without the covariant derivative notation as

∇× a =
1√
g̃
εı̃̃k̃

∂ãk̃
∂x̃̃

ũı̃. (64)
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4. The Coordinate Systems of Continuum Mechanics

4.1 Reference Coordinates

To begin applying the mathematics of the foregoing sectionsto continuum mechanics, coordinate

systems must be introduced to describe continua and their motions and deformations. The first

set of coordinates introduced in this regard is thereference coordinate set, which serves to name

the particles. Indeed, in more general, mathematical renderings of continuum mechanics, the

reference “coordinates” hardly even need to be coordinatesor even numerical, so long as each

particle is identified as a member of a set (9). We therefore assume that a material body is

composed of particles, which, at some time, could have been identified by their locationXI in a

Cartesian coordinate systemS. By the seeming circumlocution “at some time, could have been,”

we mean to imply that while the particles may never have been in the reference configurationXI ,

the mapping from that configuration to any future configurationxi is

• Injective, so that each particle in the current configuration corresponds to only one

reference particle,

• Surjective, so that each particle in the current configuration has a name, and

• Characterized by a mapping with a positive Jacobian determinant, so that the chirality of

the mapping is preserved throughout space and time.

In most work in elasticity, theXI are imagined to represent the rest state of the matter, devoid of

elastic potential energy. In other work, the reference coordinates may be the initial state of the

continuum, or they may even be ignored altogether, except toassume their existence. (This last

approach is often seen in fluid mechanics.)

Finally, in this work, we always assume thatS is Cartesian, as mentioned above but this need not

be the case in more general applications. For some problems involving lower dimensional

formulations of the theory or special symmetry, it might be useful to introduce curvilinear

material coordinates through the mappingX̃ Ĩ = Ξ̃Ĩ(XI). By the assumptions listed above and

the discussion of the previous two sections, these new coordinates would name the particles as

well as the original coordinates, and could therefore be used as the basis of a theory with no

essential complications.
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4.2 Spatial Coordinates

The current state of the particles of the body named by the reference coordinates is related by the

spatial coordinatesxi. The location of a given particleXI at a given timet is completely

specified by themotionof the particle

xi = ξi
(

XI , t
)

. (65)

This relation completely specifies particle kinematics andis the basis for the theory of continuum

mechanics.

At any fixed timet = t0, this relationship must be bijective with a positive Jacobian determinant

as mentioned in the previous section. Because of this, we mayalso write

XI = ΞI
(

xi, t
)

. (66)

This equation should not be interpreted as meaning that theXI depend on time; they don’t. For

an arbitrary fixed value of timet = t0, what equations 65 and 66 mean is thatξ andΞ are inverse

functions, i.e., that

xi = ξi
(

XI , t0
)

= ξi
(

ΞI
(

xi, t0
)

, t0
)

, (67)

or, equivalently,

XI = ΞI
(

xi, t0
)

= ΞI
(

ξi
(

XI , t0
)

, t0
)

, (68)

for all t0.

Because the particles move, the relationship between theircurrent location and their reference

designation does evolve, and that is captured by equation 66. When combined with the

curvilinear coordinate information provided in the previous sections, this observation can be used

as a basis for the definition of the coordinate system at the center of the work, which is provided

in the next subsection.

4.3 Convective Coordinates

The description of boundaries, inclusions, and other geometrically relevant physical features of a

body are often more simply described in the reference systemS than in the spatial systems.

After all, the reference system is merely a matter of particle nomenclature, whereas the particle

trajectories ins are governed by the applied excitations and the laws of physics. This can be

illustrated through the example of an elastic bar in the shape of a rectangular prism whose axes

are aligned with the coordinate axes, subjected to a large force. Assuming that the reference
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coordinates are taken to be the initial coordinates of the bar at rest att = 0, this situation is

depicted in figure 2a. InS, the boundaries of the bar correspond to equations of the form

XI = KI , whereKI is some fixed constant for each boundary in each dimension. Ofcourse, at

t = 0, the boundaries ins are just as simple to describe, since at this instant they coincide.

(a) (b) 

(c) 

S

s s

s̃

Figure 2. (a) The initial state of the bar labeled in the spatial (dashed,s) and
reference (solid,S) coordinate systems, (b) the deformed bar la-
beled in spatial coordinates (s), and (c) the deformed bar labeled
in convective coordinates (s̃). The reference coordinates never
change, remaining associated with (a) even as the deformation oc-
curs .

At a later time, under the action of outside forces, the bar will have deformed. Suppose it takes

the shape depicted in figure 2b. The spatial coordinates are depicted in this picture, and the

boundaries (obviously) do not align with them. By definition, the reference coordinates never

change, and are still depicted in figure 2a.

To arrive at a coordinate system in which features simply described in reference coordinates

retain their simple description as the body evolves and deforms, we turn to a set of spatial

curvilinear coordinates commonly calledconvective coordinates. Since they are curvilinear

spatial coordinates, we denote the convective variables byx̃ı̃ and the convective system bys̃. The

mapping that gives rise to these coordinates can be written,at each instantt as

x̃ı̃ = ξ̃ ı̃
(

xi, t
) .
= δ ı̃IΞ

I
(

xi, t
)

, (69)

16



where the functionΞ is defined in equation 66. (Note that these coordinates evolve as a function

of the “parameter”t.) The virtue of this choice is that at any arbitrary timet0, the particle with

material coordinatesXI in S has coordinates̃xı̃ = X ı̃ in s̃. After all, by equation 68,

x̃ı̃ = δ ı̃IΞ
I
(

xi, t0
)

= δ ı̃IΞ
I
(

ξi
(

XI , t0
)

, t0
)

= δ ı̃IX
I . (70)

In particular, the algebraic description of interesting object features never changes. This is

depicted in figure 2c, which labels the deformed bar of figure 2b with the convective coordinates

of system̃s.

The system̃s does both of the following:

• Describes the system as it evolves, even if the “continuum” depicted breaks apart during its

evolution, and

• Tracks the trajectory of fixed particles during that evolution.

This can be very useful for the discussion of nonmechanical physics unfolding against the

background of the continuum. In particular, because simultaneity is not absolute in the theory of

relativity (10, 11), convective descriptions can become essential. In the next section, operations

necessary for the formulation of continuum kinematics in convective coordinates are described.

5. The Operations of Continuum Mechanics in Convective Coordinates

5.1 Temporal Differentiation

Temporal differentiation iñs is not very different than inS because at all times̃xı̃ ≡ X ı̃.

Therefore, many of the formulas presented here have direct reference counterparts discussed at

length in standard texts on continuum mechanics such as references 1, 2, and 9.

Perhaps the most important temporal derivative definition is also the most basic: the particle

velocity, which is computed by holding the material coordinates (theXI) of the particle fixed, and

differentiating the spatial coordinates with respect to time:

vi
.
=

dxi

dt
. (71)

The use of the “total derivative” notationd/dt here is meant to indicate that theXI remain fixed
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but thexi vary during the differentiation. The resulting vectorvi is the velocity of a fixed particle

through space.

Another type of velocity that can be measured is the speed with which particles flow past a given

point in space. To compute this, we need to fix the point in space (thexi), and differentiate thẽxı̃

with respect to time. We can thus define

ψ̃ ı̃ .=
∂x̃ı̃

∂t
, (72)

where the “partial derivative” notation∂/∂t indicates that thexi remain fixed and theXI are

allowed to vary as particles pass. The definitions of the temporal differentiation operators above

should make it clear that
∂xi

∂t
≡ 0, (73)

and
dx̃ı̃

dt
≡ 0. (74)

Finally, functions are often presented in terms of their dependence on the spatial variables, but

need to be differentiated holding the particle constant. Given a functionf = f(xi, t), its material

derivativeis computed as

df

dt
≡ ∂f

∂t
+
∂f

∂xi
dxi

dt
=
∂f

∂t
+ vi

∂f

∂xi
. (75)

5.2 Deformations, Transformations, and Metrics

Consider two points ins separated by an infinitesimal displacementdxi. This displacement is

related to an infinitesimal displacementdXI in S by the equation

dxi =
∂xi

∂XI
dXI , (76)

and to an infinitesimal variable transformationdx̃ı̃ in s̃ by

dxi =
∂xi

∂x̃ı̃
dx̃ı̃. (77)

Equations of this form, of course, hold for any change of variables; after all, this is just a

straightforward application of the chain rule of calculus.Moreover, becauseXI ≡ x̃I at all

times, the set of numbers invoked on the right-hand sides of equations 76 and 77 are the same.

18



Nonetheless, their meanings are different because they refer to spaces with different metric

structures. The squared magnitude ofdXI is given by

dS2 = δIJdX
IdXJ , (78)

whereas the squared magnitude ofdx̃ı̃ is

ds̃2 = g̃ı̃̃dx̃
ı̃dx̃̃. (79)

The reason for this “discrepancy” is that two different lengths are involved:dS2 is the square

length of thereferencesegment that corresponds todx in the spatial domain, whereasds̃2 = ds2

because they are the squared length of the same segmentdx in different coordinate systems. Of

course, by equation 76 we may write

ds2 = CIJdX
IdXJ (80)

where the Green deformation tensor (1) or right Cauchy-Green tensor (12) is defined by

CIJ = δij
∂xi

∂XI

∂xj

∂XJ
(81)

Recalling that̃xI ≡ XI at all times, and recalling the definition of the metric tensor in terms of

the variable transformations given in equation 21, we find that

g̃ı̃̃ ≡ δIı̃ δ
J
̃ CIJ , (82)

that is, that the right Cauchy-Green tensor and the convective metric tensor are numerically

indistinguishable.

From these observations, the computation of (oriented) areas and lengths using reference,

convective, and spatial coordinates is simple. A differential oriented area in the reference

configurationS is given by

dAI = εIJKdX
JdXK . (83)

In the current configuration, this oriented area is transformed into a new vector with components

given by

dai = εijkdx
jdxk (84)

in s, or by

dãı̃ =
√

g̃ εı̃̃k̃dx̃
̃dx̃k̃ (85)
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in s̃. The coefficients of the oriented areasdai anddãı̃ obey a simple tensor relationship; they

represent the same tensor quantity in two different coordinate systems. The relationship between

these coefficients and thedAI can be computed from the definition, resulting finally in

dai =
∂x̃ı̃

∂xi
dãı̃ =

√
C
∂XI

∂xi
dAI . (86)

Volumes are computed in much the same way. Reference volumesin S are computed by the

Euclidean scalar triple product

dV = dX1U1 ·
(

dX2U2 × dX3U3

)

= dX1dX2dX3. (87)

Spatial volumes ins are computed likewise, resulting in

dv = dx1dx2dx3. (88)

The curvilinear definition of the vector product needs to be invoked to compute volumes iñs,

resulting in

dṽ = dx̃1ũ1 ·
(

dx̃2ũ2 × dx̃3ũ3

)

=
√

g̃ dx̃1dx̃2dx̃3. (89)

These three different expressions for two different differential volumes are related by

dv = dṽ =
√
C dV, (90)

since at all timesC = g̃ anddXI = δIı̃ dx̃
ı̃.

5.3 Three More Basic Relationships

Before presenting the Maxwell equations in convective coordinates, three more basic results of

geometry and continuum mechanics are needed. In the standard continuum mechanics literature,

these relationships are often written in reference coordinates, but here we translate them (where

needed) into convective coordinates.

5.3.1 Particle Velocity and Identity Flux

The first basic equation derived here relates the particle velocity componentsvi of equation 71 to

the identity flux components̃ψ ı̃ of equation 72 (3). By equation 74,dx̃ı̃/dt = 0, so that choosing

f = x̃ı̃ in equation 75 gives

ψ̃ ı̃ = −∂x̃
ı̃

∂xi
vi. (91)
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5.3.2 The Spatial Equation of Continuity

The second equation presented here is the spatial equation of continuity (1–3, 9). This

relationship is predicated on the ability to compute the temporal derivative to the evolving metric
√
g̃ , which, in turn, involves differentiating the transformation tensor with respect to time. In

particular, the temporal derivative of the transformationtensor is given by

d

dt

(

∂xi

∂x̃ı̃

)

=
∂vi

∂x̃ı̃
=
∂vi

∂xj
∂xj

∂x̃ı̃
. (92)

Given the definition of the transformation determinant, theproduct rule of calculus, and the

vanishing of determinants with equal rows, this relationship may be used to show that

d
√
g̃

dt
=

dvi

dxi

√

g̃ . (93)

Given any (scalar, vector, or tensor) quantityF , invoking the above along with the product rule

gives rise to thespatial equation of continuity:

1√
g̃

d
(√

g̃ F
)

dt
=
∂F
∂t

+
∂(viF)

∂xi
. (94)

5.3.3 Convected Time Derivative

Finally, we have occasion to compute the material derivative of a flux. Given a vectorgi we seek

a vector̊gi called theconvected time derivative(3, 9) of gi such that

∫

Γ

g̊i dai =
d

dt

∫

Γ

gi dai. (95)

Here,Γ ⊂ R
3 is an open surface in space; that is, it is isomorphic to a finite part of a plane. We

may compute the necessary quantity in several steps. First,by invoking equations 30 and 77, the

integrand may be brought into convective coordinates and the derivative moved inside the integral:

d

dt

∫

Γ

gi dai =

∫

Γ

d

dt

[

gi
√

g̃
∂x̃ı̃

∂xi

]

1√
g̃

∂xj

∂ı̃
εjk`dx

kdx`. (96)

Thus, using the product differentiation formula and equation 94,

g̊i =
∂gi

∂t
+

∂

∂xk
(

vkgi
)

+ gj
∂xi

∂x̃ı̃
d

dt

(

∂x̃ı̃

∂xj

)

. (97)
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Using the fact thatδij is constant in time,

∂xi

∂x̃ı̃
d

dt

(

∂x̃ı̃

∂xj

)

= − ∂vi

∂xj
, (98)

follows immediately. Therefore, inserting this relation into equation 97, we find

g̊i =
∂gi

∂t
+
∂(vkgi)

∂xk
− ∂vi

∂xj
gj, (99)

which, upon relabeling indices and applying the product rule becomes the desired relationship

g̊i =
∂gi

∂t
+ εijk

∂

∂xj
[

εk`mv
mg`
]

− ∂gj

∂xj
vi. (100)

This is the final form of the convected time derivative.

6. Maxwell’s Equations in Convective Coordinates

6.1 Maxwell’s Equations in Vacuum in Spatial Coordinates

Before transforming the Maxwell equations to a convective frame, they must be stated in the

usual spatial frame. In SI units, the basic quantities of electromagnetic theory aretotal chargeq

measured in coulombs per meter cubed (C/m3), total current densityji measured in amperes per

meter squared (A/m2), theelectric fieldei measured in volts per meter (V/m), and themagnetic

flux densitybi measured in tesla (T). We have not demonstrated that any of these quantities is

tensorial; therefore, we make these definitions at the outset and do not assume they have tensorial

properties. In particular, we do not change bases by raisingor lowering indices. (These

definitions are the ones that make sense later in that they preserve the form of the macroscopic

Maxwell equations in all systems. Therefore, these definitions have been made with considerable

hindsight.) In vacuum, the Maxwell equations are

∂

∂xi
(

δijej
)

=
q

ε0
, (101)

∂bi

∂xi
= 0, (102)

εijk
∂ek
∂xj

= −∂b
i

∂t
, (103)

εijk
∂

∂xj
(

δk`b
`
)

= µ0ε0
∂

∂t

(

δijej
)

+ µ0j
i. (104)
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The quantityµ0 = 4π× 10−7 henries per meter (H/m) is called thepermeability of free space, and

the quantityε0 = (µ0c
2)−1 farads per meter (F/m) is called thepermittivity of free space, where

c = 299792458 m/s is thespeed of light in vacuum. The electric field and magnetic flux density

described above are basic in the sense that the Lorentz forceequation

fi = q
(

ei + εijkv
jbk
)

(105)

relates the mechanical force densityfi (N/m3) to these two fields, the charge densityq, and the

speed at which the charge is movingvj . Of course, the current density is related to the charge

density by the usual formulaji = qvi. Equation 101 is known as Gauß’s law for the electric

field; equation 102 is known as Gauß’s law for the magnetic field; equation 103 is known as

Faraday’s law, and equation 104 is known as the Ampère-Maxwell law. Charge conservation

follows immediately upon taking the divergence of equation104 and inserting equation 101,

resulting in the equation of continuity

∂ji

∂xi
+
∂q

∂t
= 0. (106)

6.2 Maxwell’s Equations in Ponderable Materials in SpatialCoordinates

Ponderable, that is massive, materials affect electromagnetic wave propagation because they are

constructed out of charged particles like protons and electrons. Equations 101–104 are not

particularly convenient in practice in such media because the charge and current they reference

are the total charge and current; that is, they make no distinction between charges and currents

impressed externally to create fields and those arising merely because fields acting upon charges

bound in matter are acted upon by other fields. (Another way ofsaying this is that they are in

microscopicform; they consider all matter from a corpuscular, rather than continuum, viewpoint.)

Bound charge densities arise either through the creation ofnew dipoles or the alignment of

existing dipoles in response to an external field. The density of these dipoles can be reckoned as

a vector dipole moment per unit volumepi (C/m2) related to the bound charge density by

qB
.
=
∂pi

∂xi
, (107)

and this dipole density can be related, in turn, to the total field (13). Defining the free charge as

the difference between the total charge and the bound charge,

qF
.
= q − qB, (108)
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the Gauß law for the electric field becomes

ε0
∂

∂xi
(

δijej
)

= qF − ∂pi

∂xi
. (109)

This is generally simplified by defining theelectric displacement density

di
.
= ε0

(

δijej
)

+ pi, (110)

(in C/m2) and writing the Gauß law as
∂di

∂xi
= qF. (111)

Similarly, the total current density may be broken into its constitutive parts:

ji
.
= jiF +

∂pi

∂t
+ εijk

∂

∂xj

(

mk + εkmnp
mvn

)

. (112)

HerejiF is the free current (impressed and conducted) density, the term∂pi/∂t is the current

caused by local increase or decrease of polarization charges, and the term related toεkmnp
mvn has

to do with the convected polarization charges. Finally, themk is the magnetization per unit

volume (A/m3), resulting from the formation of magnetic dipoles in reaction to the field (3, 13).

Inserting this definition into equation 104 gives rise to themacroscopic Ampère-Maxwell law

εijk
∂hk
∂xj

= jiF +
∂di

∂t
, (113)

where themagnetic fieldhk (in A/m) is defined as

hi
.
=

(δijb
j)

µ0

−mi − εijkp
jvk. (114)

6.3 Maxwell’s Macroscopic Equations in Convective Coordinates

In principle, translating the Maxwell equations into convective coordinate form should be easy.

After all, if electromagnetics is a proper physical theory,its quantities should change coordinate

systems as tensors, and formulas can be written immediately. Unfortunately, that basic physical

observations prohibit this is clear upon momentary reflection: An observer holding a charge sees

an electric field, but another observer moving with respect to the first sees a current and therefore

a magnetic field. This implies immediately that the electricand magnetic fields must be part of

the same physical entity, as indeed they are in the theory of relativity (10, 11, 13). Despite this,
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nonunique theories may be constructed via other means; thisis the approach taken here to

illustrate the convective form of reference 3. This work aimed to preserve the macroscopic

Maxwell equations. Though other approaches are possible, we do not consider them here.

To convert equation 113 to convective coordinates, we integrate both sides over an arbitrary

surface and apply Stokes’s theorem to find

∫

Γ

εijk
∂hk
∂xj

dai =

∮

∂Γ

hidx
i. (115)

Here, the covariant components of the spatial directed differential area are given by equation 84,

and the right-hand side indicates a line integral around theclosed path∂Γ surroundingΓ in spatial

coordinates. (The path∂Γ has direction related to that of the normal toΓ by the right-hand rule.

The circle notation on the path integral indicates that the path is necessarily closed.) We can

simplify the right-hand side of equation 113 using the convected time derivative defined in

equation 100. Specifically, using equation 100 to substitute for the partial derivative of the

electric displacement, and recognizing the meaning of thatderivative, equation 113 can be written

in the form
∮

∂Γ

(

hi − εijkv
jdk
)

dxi =
d

dt

∫

Γ

di dai +

∫

Γ

(

jiF − vi
∂dj

∂xj

)

dai. (116)

Because the time derivative in this equation is the materialtime derivative, the integrals can be

converted to convective coordinates using the techniques from the previous sections.

Recognizing the free charge, this procedure results in the final integral form of the

Ampère-Maxwell law in convective coordinates,

∮

∂Γ

(

hi − εijkv
jdk
) ∂xi

∂x̃ı̃
dx̃ı̃ =

d

dt

∫

Γ

di
∂x̃ı̃

∂xi
dãı̃ +

∫

Γ

(

jiF − qFv
i
) ∂x̃ı̃

∂xi
dãı̃, (117)

and Stokes’s theorem gives its final differential form:

εı̃̃k̃
∂

∂x̃̃

[

(

hi − εijkv
jdk
) ∂xi

∂x̃k̃

]

=
d

dt

(

di
∂x̃ı̃

∂xi

)

+
(

jiF − qFv
i
) ∂x̃ı̃

∂xi
. (118)

Because we want the form of this equation preserved under thecoordinate change, we insist that

this equation be interpreted as the convective Ampère-Maxwell law

1√
g̃
εı̃̃k̃

∂h̃k̃
∂x̃̃

=
dd̃ı̃

dt
+ ̃C, (119)
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so that we define the convective magnetic field by

h̃ı̃
.
=
(

hi − εijkv
jdk
) ∂xi

∂x̃ı̃
, (120)

the convective displacement density by

d̃ı̃
.
=
∂x̃ı̃

∂xi
di, (121)

and the conducted convected current by

̃C
.
=
(

jiF − qFv
i
) ∂x̃ı̃

∂xi
. (122)

(This last is calledconducted currentand not free current because the only charge moving relative

to the convected frame must be that conducted through it.) Faraday’s law is converted in the

same way and becomes
1√
g̃
εı̃̃k̃

∂ẽk̃
∂x̃̃

= −db̃ı̃

dt
, (123)

where

ẽı̃
.
=
(

ei + εijkv
jbk
) ∂xi

∂x̃ı̃
, (124)

and

b̃ı̃
.
=
∂x̃ı̃

∂xi
bi. (125)

The divergence equations can be converted even more simply.Integrating both sides of

equation 111 over an arbitrary volume and applying the divergence theorem immediately gives

the convective, integral form of the Gauß law for the electric field:

∮

∂Ω

di
∂x̃ı̃

∂xi
dãı̃ =

∫

Ω

qFdṽ. (126)

Here,Ω ⊂ R
3 is a volume and∂Ω is the surface enclosing it. The circle around the integral

symbol used on the left-hand side of this equation implies a surface that is necessarily closed. If

we define

q̃F
.
= qF, (127)

and apply equation 121 and the divergence theorem again, theconvective differential form of the

electric Gauß law obtains:
1√
g̃

∂

∂x̃ı̃

(

√

g̃ d̃ı̃
)

= q̃F. (128)
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The magnetic Gauß law
1√
g̃

∂

∂x̃ı̃

(

√

g̃ b̃ı̃
)

= 0, (129)

is derived similarly.

6.4 Maxwell’s Microscopic Equations in Convective Coordinates

Many of the same techniques can be applied to transform the microscopic Maxwell equations to

convective coordinates. That this needs to be discussed at all springs from the fact that these

equations directly incorporate the contravariant components of the electric field vector and the

covariant components of the magnetic flux density, in spite of the fact that these cannot be derived

from the usual process of raising or lowering indices. (Thatthis is the case is already clear from,

for instance, equation 124; the coordinate change formula for the electric field should not involve

the magnetic field if the electric field is a true independent tensor quantity.)

On the other hand, two of the microscopic Maxwell equations are identical to their macroscopic

counterparts because they are homogeneous. These two equations, the Gauß’s law for the

magnetic field (equation 129) and the Faraday law (equation 123) therefore are not altered. The

two equations containing sources, however, are more complicated and we turn to them now.

6.4.1 Gauß’s Law for the Electric Field

Integrating Gauß’s law for the electric field in microscopicform (equation 101) over an arbitrary

volume, and using Stokes’s theorem to convert the field integral to a surface integral yields

ε0

∮

∂Ω

δijej dai =

∫

Ω

q dv (130)

Using equations 86 and 90, these areas and volumes can be converted to convective coordinates

resulting in

ε0

∮

∂Ω

δij
∂x̃ı̃

∂xi
ej dãı̃ =

∫

Ω

q dṽ. (131)

Using the divergence theorem again to convert the left-handside of this equation back into a

volume integral, and defining the convected total charge in the obvious way (i.e.,̃q
.
= q), we find

ε0

∫

Ω

1√
g̃

∂

∂x̃ı̃

[

√

g̃ δij
∂x̃ı̃

∂xi
ej

]

dṽ =

∫

Ω

q̃ dṽ. (132)
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Finally, recognizing the arbitrariness of the integrationvolume, and substituting the expression

for the electric field from the inverse of equation 124 (whileinvoking the velocity transformation

of equation 91), we find the final microscopic form of the Gauß law for the electric field:

ε0
1√
g̃

∂

∂x̃ı̃

{

√

g̃

[

g̃ ı̃̃
(

ẽ̃ +
√

g̃ ε̃k̃m̃ψ̃
k̃ b̃m̃
)

]

}

= q̃. (133)

We can derive the definition of the electric displacement density in terms of the electric field and

polarization density from this equation. By expressing thetotal charge in terms of its free and

bound components in equation 131 (while substituting the expression for electric field from

equation 133), then proceeding on the left-hand side as before, we can write

ε0

∫

Ω

1√
g̃

∂

∂x̃ı̃

{

√

g̃

[

g̃ ı̃̃
(

ẽ̃ +
√

g̃ ε̃k̃m̃ψ̃
k̃b̃m̃
)

]

}

dṽ =

∫

Ω

qF dv −
∫

Ω

∂pi

∂xi
dv. (134)

Now, following the same steps as before to convert the rightmost integral first to a surface integral

and back, changing to the convected coordinate system alongthe way, the right-hand side

becomes
∫

Ω

qF dv −
∫

∂pi

∂xi
dv =

∫

Ω

q̃F dṽ −
∫

Ω

1√
g̃

∂

∂x̃ı̃

(

√

g̃
∂x̃ı̃

∂xi
pi
)

dṽ. (135)

Thus, defining the convected polarization density through the standard tensorial transformation

p̃ı̃
.
=
∂x̃ı̃

∂xi
pi, (136)

we may write that in the convected coordinates

q̃ = q̃F − 1√
g̃

∂

∂x̃ı̃

(

√

g̃ p̃ı̃
)

, (137)

so that

ε0

∫

Ω

1√
g̃

∂

∂x̃ı̃

{

√

g̃

[

g̃ ı̃̃
(

ẽ̃ +
√

g̃ ε̃k̃m̃ψ̃
k̃ b̃m̃
)

+ p̃ı̃
]

}

dṽ =

∫

Ω

q̃F dṽ. (138)

Comparison of this equation with equation 128, coupled withthe realization that the volume of

integration is arbitrary, leads to the final form of the convected constitutive law:

d̃m̃ = ε0g̃
m̃ı̃
(

ẽı̃ +
√

g̃ εı̃̃k̃ψ̃
̃b̃k̃
)

+ p̃m̃. (139)

This is not of the formd = ε0e+ p seen ins. Therefore, if we are to believe this equation, we
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must believe that the laws of physics depend on the observer,in direct contradiction to the

principle of relativity. The reader may object that this particular equation results only from our

decision to force the macroscopic Maxwell equations to havethe same form in different

coordinate systems. This, of course, is true, but if we attempted to force the constitutive relation

to hold in all systems, we would find the macroscopic Maxwell equations would be of different

form in each system. We conclude from this that electromagnetics is incompatible with the

Galilean relativity assumed in standard Newtonian physics.

6.4.2 The Ampère-Maxwell Law

We finally turn to the convective form of equation 104, the microscopic Ampère-Maxwell law.

Integrating this equation, and using Stokes’s theorem and the definition of the convected time

derivative (equation 100), we find

∮

∂Γ

[

1

µ0

bi − ε0εijkv
j
(

δkmem
)

]

dxi = ε0
d

dt

∫

Γ

δijej dai +

∫

Γ

[

ji − ε0
∂

∂xk
(

δjkek
)

vi
]

dai. (140)

The integrals are now converted over to convective coordinates using the usual formulas, giving

∮

∂Γ

[

1

µ0

bi − ε0εijkv
j
(

δkmem
)

]

∂xi

∂x̃ı̃
dx̃ı̃

= ε0
d

dt

∫

Γ

δijej
∂x̃ı̃

∂xi
dãı̃ +

∫

Γ

[

ji − ε0
∂

∂xk
(

δjkek
)

vi
]

∂x̃ı̃

∂xi
dãı̃. (141)

From the last term of this equation, we immediately recognize the convective total current

̃ı̃ =
∂x̃ı̃

∂xi
(

ji − qvi
)

. (142)

Now, the left-hand side of equation 141 can be manipulated algebraically to show that

[

1

µ0

bi − ε0εijkv
j
(

δkmem
)

]

=
1

µ0

g̃ı̃m̃b̃
m̃ + ε0

√

g̃ εı̃̃k̃ψ̃
̃g̃k̃m̃

(

ẽm̃ +
√

g̃ εm̃ñp̃ψ̃
ñb̃p̃
)

. (143)

Inserting these relations into equation 141, and once againinvoking the inverse of equation 124

and recognizing the arbitrariness of the integration volume, gives the final form of the

29



microscopic Ampère-Maxwell law:

1√
g̃
εı̃̃k̃

∂

∂x̃̃

{

√

g̃

[

1

µ0

g̃k̃ ˜̀̃b
˜̀
+ ε0

√

g̃ εk̃m̃ñψ̃
m̃g̃ñp̃

(

ẽp̃ +
√

g̃ εp̃r̃s̃ψ̃
r̃b̃s̃
)

]}

= ε0
d

dt

[

g̃ ı̃̃
(

ẽ̃ +
√

g̃ ε̃k̃ ˜̀ψ̃
k̃ b̃

˜̀
)]

+ ̃ı̃. (144)

This result is inconsistent with the principle of relativity; it looks nothing like its spatial version.

Finally, we need to derive the magnetic constitutive relations in convective coordinates from this

equation. We proceed in a manner similar to that for the electric relationship. To begin, we can

separate the current and charge into their component parts using equations 112 and 108, and

insert these definitions into the integral of equation 144. Thus, equation 144 is written as

∮

∂Γ

[

1

µ0

g̃ı̃ ˜̀̃b
˜̀
+ ε0

√

g̃ εı̃̃k̃ψ̃
̃g̃k̃

˜̀
(

ẽ˜̀+
√

g̃ ε ˜̀̃rs̃ψ̃
r̃b̃s̃
)

]

dx̃ =

ε0
d

dt

∫

Γ

g̃ ı̃̃
(

ẽ̃ +
√

g̃ ε̃r̃s̃ψ̃
r̃b̃s̃
)

dãı̃

+

∫

Γ

∂x̃ı̃

∂xi

{

jiF +
∂pi

∂t
+ εijk

[

∂mk

∂xj
+

∂

∂xj
(

εk`mp
`vm
)

]

−
(

qF − ∂pj

∂xj

)

vi
}

dãı̃. (145)

The conduction current is immediately recognizable here, and so can be simplified out of the

messy last integral. The resulting expression reads

∮

∂Γ

[

1

µ0

g̃ı̃ ˜̀̃b
˜̀
+ ε0

√

g̃ εı̃̃k̃ψ̃
̃g̃k̃

˜̀
(

ẽ˜̀+
√

g̃ ε ˜̀̃rs̃ψ̃
r̃b̃s̃
)

]

dx̃ı̃

= ε0
d

dt

∫

Γ

g̃ ı̃̃
(

ẽ̃ +
√

g̃ ε̃r̃s̃ψ̃
r̃b̃s̃
)

dãı̃

+

∫

Γ

∂x̃ı̃

∂xi

{

∂pi

∂t
+ εijk

[

mk,j +
∂

∂xj
(

εk`mp
`vm
)

]

+ pj,jv
i

}

dãı̃ +

∫

Γ

̃ı̃Cdãı̃, (146)

where

̃ı̃C
.
=
∂x̃ı̃

∂xi
jiC =

∂x̃ı̃

∂xi
(

jiF − qFv
i
)

= ̃ı̃F + q̃Fψ̃
ı̃. (147)

Next, by transforming the Levi-Civita symbol and invoking Stokes’s theorem, we can show that

∫

Γ

∂x̃ı̃

∂xi
εijk

∂mk

∂xj
dãı̃ =

∮

∂Γ

mi

∂xi

∂x̃ı̃
dx̃ı̃, (148)
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from which we gather that

m̃k̃

.
=
∂xk

∂x̃k̃
mk. (149)

Finally, we invoke the definition of the convected time derivative (equation 100) to simplify the

terms involving the polarization:

∫

Γ

∂x̃ı̃

∂xi

[

∂pi

∂t
+ εijk

∂

∂xj
(

εk`mp
`vm
)

+
∂pj

∂xj
vi
]

dãı̃ =
d

dt

∫

Γ

p̃ı̃ dãı̃. (150)

Substituting all of these equations back into equation 146 finally yields

∮

∂Γ

[

1

µ0

g̃ı̃ ˜̀̃b
˜̀
+ ε0

√

g̃ εı̃̃k̃ψ̃
̃g̃k̃

˜̀
(

ẽ˜̀+
√

g̃ ε ˜̀̃rs̃ψ̃
r̃b̃s̃
)

− m̃ı̃

]

dx̃ı̃

= ε0
d

dt

∫

Γ

[

g̃ ı̃̃
(

ẽ̃ +
√

g̃ ε̃r̃s̃ψ̃
r̃b̃s̃
)

+ p̃ı̃
]

dãı̃ +

∫

Γ

̃ı̃C dãı̃. (151)

Recognizing the expression for̃dı̃ buried in here, we find that the constitutive relationship

h̃ı̃ =
1

µ0

g̃ı̃ ˜̀̃b
+ε0
√

g̃ εı̃̃k̃ψ̃
̃g̃k̃

˜̀
(

ẽ˜̀+
√

g̃ ε˜̀m̃ñψ̃
m̃b̃ñ
)

− m̃ı̃ (152)

recovers equation 119. Notice that once again, this equation does not resemble its spatial form.

Finally, a careful accounting of the dispensation of all of the terms in the above demonstrates that

̃ı̃ = ̃ı̃Cε
ı̃̃k̃ ∂m̃k̃

∂x̃̃
+

dp̃ı̃

dt
. (153)

The convective contribution of the polarization density present in the spatial domain is absent

here as it is bound to the material that is not moving in the this frame.

7. Conclusions

This report has documented the formulation of physical lawsin moving reference frames, with

extra attention paid to the Maxwell equations of electromagnetic theory. The first part of the

report, making up its bulk, describes how the expression of physical theories change with

changing coordinate systems. In particular, this portion of the work discusses what sort of

relationships physical quantities must obey so that the resulting theory is consistent when the
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coordinate system that forms the basis for its description is curvilinear, nonorthogonal, and

time-varying. In particular, the discussion shows that twodifferent sets of basis vectors are

convenient for the expression of physical law in nonorthogonal systems: A covariant set (called

ũı̃ in the text), in which each basis vector points in the direction of variation of a given coordinate

holding all other coordinates fixed, and a contravariant set(calledũı̃ in the text) pointing

orthogonal to the constant coordinate surfaces. In orthonormal systems, these bases are identical,

but in nonorthogonal systems they are merely biorthogonal.

These different bases are chosen merely because they are useful for the expression of physical

laws, and, in general, have no deep physical significance in and of themselves. Changing from

one system to the other is merely a mathematical change of basis; for the underlying physical

theory to be meaningful, such a transformation must be physically irrelevant. (A theory that said

otherwise would imply that the world is affected by our description of it!) When the Maxwell

equations are formulated in the material coordinate systems of continuum mechanics this simple

consistency requirement fails, and for this reason, the literature is filled with a profusion of

contradictory theories about how the Maxwell equations should be expressed in the coordinate

systems used by continuum mechanics other than the spatial.

The second “half” of this report seeks to clarify the expression of the Maxwell equations in

coordinate systems relevant to continuum mechanics. In so doing, it subtly illustrates two

primary points:

• The consistency or inconsistency of a theory cannot be determined by its expression in

materialor “Lagrangian” coordinates, but must be determined in a coordinate system

describing the same physics as the spatial system, such as theconvectivecoordinate system.

• Under standard Newtonian physics, invoking the Galilean transformation for moving

systems, the convective form of the Maxwell lawscannotbe consistently formulated,

resulting in the confusion in the literature. Consistent formulation requires the theory of

relativity and is the subject of the sequel to this report.

We discuss each of these points in turn.

The first point is perhaps most clearly understood as it results from the definition of material

coordinates as merely labels for material points; they function as a way of tracking individual

particles on their journey through space and time. For this reason, not only need they not

correspond to the state of the body in question at the initialtime, they need not match the physical

arrangement of the body at any time whatsoever. They need merely represent a potential state of
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the body so that the mapping describing its motion retains some simple topological consistency.

As a mere labeling of points, there is no need for any physicaltheory to be satisfied in material

coordinates; the configuration they describe is a fiction. This leaves the theorist at a loss in

distinguishing between different expressions of the theory in the material frame, since there is no

reason for preferring one transformation to any other.

In this regard, we also note that for precisely the same reason, the experimentalist cannot resolve

the issue. The “value of the electric field in material coordinates” is not something that can be

measured since it refers to a coordinate system that may never have existed in the lab. This is not

a mere matter of accessibility either; there is simply no field that can be measured or even suitably

manipulateda posterioriinto a quantity that can be coherently called the material electric field.

The second point is made clear from section 6. By forcing the macroscopic Maxwell equations to

have the same form in convective coordinates, some variables are forced to be covariant and

others are forced to be contravariant. While the Maxwell equations still stand in a recognizable

form with the proper choices, the resulting constitutive laws are bizarre. The equations

transforming fields between frames are coupled, which should not be the case if the electric and

magnetic fields are independent physical entities. Worse still, indices cannot be “raised” or

“lowered” in the usual way, a situation literally tantamount to saying that the physics of the

situation depends on a choice of basis, i.e., on an arbitraryissue of mathematical depiction.

These problems (with the description in convective coordinates) spring from the constancy of the

speed of light relative to all observers predicted by the Maxwell relations but not by Newtonian

physics, and they cannot be remedied without appeal to the special theory of relativity.
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